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Abstract The Chinese genebank contains 23,587 soybean
landraces collected from 29 provinces. In this study, a repre-
sentative collection of 1,863 landraces were assessed for
genetic diversity and genetic differentiation in order to pro-
vide useful information for effective management and utiliza-
tion. A total of 1,160 SSR alleles at 59 SSR loci were
detected including 97 unique and 485 low-frequency alleles,
which indicated great richness and uniqueness of genetic var-
iation in this core collection. Seven clusters were inferred by
STRUCTURE analysis, which is in good agreement with a
neighbor-joining tree. The cluster subdivision was also sup-
ported by highly significant pairwise F, values and was gen-
erally in accordance with differences in planting area and
sowing season. The cluster HSuM, which contains acces-
sions collected from the region between 32.0 and 40.5°N,
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105.4 and 122.2°E along the central and downstream parts of
the Yellow River, was the most genetically diverse of the
seven clusters. This provides the first molecular evidence for
the hypotheses that the origin of cultivated soybean is the
Yellow River region. A high proportion (95.1%) of pairs of
alleles from different loci was in LD in the complete dataset.
This was mostly due to overall population structure, since the
number of locus pairs in LD was reduced sharply within each
of the clusters compared to the complete dataset. This shows
that population structure needs to be accounted for in associ-
ation studies conducted within this collection. The low value
of LD within the clusters can be seen as evidence that much
of the recombination events in the past have been maintained
in soybean, fixed in homozygous self-fertilizing landraces.

Introduction

It is generally accepted that soybean (Glycine max (L.)
Merr.) originated in China (Fukuda 1933; Vavilov 1951;
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Fig. 1 Soybean landraces are divided into three large eco-regions,
namely Northern eco-region (NR), Huang-Huai eco-region (HR), and
Southern eco-region (SR) in order to establish primary core collection
as sketched on map of China. The eco-geographic regions are roughly
separated by the Yellow River and the Yangtse River

Hymowitz and Newell 1981). Soybean cultivation in China
can be traced back over 3,000 years, as evidenced by the
ancient books and archaeological discoveries (Morse 1950;
Zhao and Gai 2004). To date, soybean is grown in China as
one of the most important economic crops for its high oil
and protein concentrations and is planted widely in China
from Tahe county, Heilongjiang province (53°N) in the
north to Ya county, Hainandao province (18°N) in the
south. According to topographic distribution, soybean pro-
duction in China is concentrated in three main areas: North-
ern region, Huang-Huai (Yellow River-Huai River) region,
and Southern region (Fig. 1).

Due to differences in climate and soils each main pro-
duction region can be further divided into smaller sub-
regions (Wang 1991; Pan et al. 1994; Wang and Gai 2002).
Each region has different growing conditions and locally
adapted cultivars (Lu et al. 1981; Bu and Pan 1987). Soy-
beans can be planted during spring in all three regions, dur-
ing summer in Huang-Huai and Southern regions and
during fall only in Southern region.

Soybean landraces are adapted to various environments,
from cold to hot, humid to drought, and fertile plains to ele-
vated mountains. Some soybean landraces are still being
used as local cultivars in southern provinces such as
Guangdong, Guangxi, Yunnan, and Guizhou, although the
vast majority of the production areas are planted with mod-
ern commercial varieties. These landraces have emerged as
valuable germplasm for breeding modern soybean culti-
vars. For instance, more than 20 cultivars released in China
have the superior offspring from two local soybean landrace
Fengdihuang and Xiongyaoxiaolihuang, in their pedigrees
(Chang et al. 1998). The Chinese landraces have also been
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introduced into other major soybean-producing countries
including the United States, Brazil, and Japan (Chang et al.
1998). Disease resistant resources such as Peking and PI
88788 for soybean mosaic virus and soybean cyst nematode
(Heterodera glycines Ichinohe) resistance have been used
in the US for the development of new soybean cultivars
(Pantalone etal. 2003; Anand etal. 2004; Wang et al.
2005).

Collection, evaluation, conservation, and utilization of
soybean landraces have become one of the top priorities for
agricultural crop research in China. The Chinese national
collection of soybean landraces is deposited at the National
Gene Bank at the Institute of Crop Science, Chinese Acad-
emy of Agricultural Sciences. With the collaboration of
provincial germplasm institutions throughout China, more
than 23,000 soybean germplasm lines have been collected
and preserved in the national gene bank. This large number
has presented challenges and demands for more efficient
management and cost-effective conservation. Tremendous
efforts have been taken in characterizing these soybean
germplasm, mainly for phenotypic traits. In order to further
identify and use the genetic diversity in these collections,
we have constructed a primary core collection representing
70-80% of genetic variation present in the original entire
collection (Qiu et al. 2003).

Genetic diversity analysis reveals genetic backgrounds
and relationships of germplasm, and also provides strate-
gies to establish, unitize, and manage crop core collections
(Brown-Guedira et al. 2000; Roussel et al. 2004). Since
1981, soybean researchers have studied genetic diversity of
cultivars, landraces and annual wild soybeans (Lu et al.
1981; Kisha etal. 1998; Cui et al. 2000; Li and Nelson
2001; Xu et al. 2002; Cui et al. 2003; Lin et al. 2003; Ude
etal. 2003; Xie etal. 2003; Zhu etal. 2003; Cui et al.
2004a; 2004b; Dong et al. 2004; Mi et al. 2004; Wang et al.
2004; Chen and Nelson 2005; Li et al. 2005; Luan et al.
2005; Piao et al. 2005; Xie et al. 2005; Zhang et al. 2005;
Wang et al. 2006; Guan et al. 2006). However, all of those
studies compared the diversity among pre-defined popula-
tions based on tillage systems, geographical origins, and
phenotypes. The traditional estimators of population struc-
ture will reduce the genetic information of germplasm if
pre-defined populations do not accurately match the biolog-
ical reality (Pearse and Crandall 2004). This is a serious
problem for correct evaluation the genetic structure and
diversity, especially in a diverse crop cultivated across a
large geographical area. Take for example the single crop-
ping system, which is classified by tillage system and sow-
ing time or weather factors such as temperature, water, and
photoperiod in China (Bu and Pan 1987; Pan et al. 1994;
Wang and Gai 2002). Lu etal. (1981) and Bu and Pan
(1987) considered the entire Southern China as one crop-
ping region because multiple planting soybeans exist in this
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region, while Pan etal. (1994) divided cultivars from
Southern China into three subgroups. Wang and Gai (2002)
divided them into four ecotypes, and added a new ecotype
for the cultivars from YunGui plateau region. The charac-
terization of the correct population structure within germ-
plasm collections is critical to identify and correctly
interpret the associations between functional and molecular
diversity (Pritchard and Rosenberg 1999; Buckler and
Thornsberry 2002).

Bayesian or maximum-likelihood model-based cluster-
ing methods enable defining populations and assign indi-
viduals to these inferred populations based on genetic data
alone (Pritchard et al. 2000). Currently, STRUCTURE is
one of the most widely used genotypic clustering programs
(Pritchard et al. 2000). The Bayesian method in STRUC-
TURE does not use sampling locations, hypothesized
genetic origins of cultivars, or phenotypic information, but
uses the number of genetic clusters specified before the
algorithm is applied (Rosenberg et al. 2002). Typically, the
program analyzes the data starting with various numbers of
predefined clusters, after which the best fitting model is
selected based on extent of genetic information explained
and on the match with the known characteristics of the bio-
logical samples. STRUCTURE has been successfully
applied on the genetic structure analyses of, for example,
human (Rosenberg et al. 2002), dog (Parker et al. 2004),
and maize (Remington et al. 2001; Liu et al. 2003). The
program can handle large numbers of simple sequence
repeat (SSR) or microsatellite markers, which are widely
used because they are highly polymorphic, abundantly
available and randomly distributed in the genome, and co-
dominantly inherited (McGregor et al. 2000; Narvel et al.
2000).

The application of association mapping to detect quanti-
tative trait loci (QTLs) for functional genes appears to be a
promising approach to overcome the limitations of conven-
tional linkage mapping and has received increased attention
of plant geneticists during the last few years (Kraakman
et al. 2004; Gupta et al. 2005). Information on the extent
and structure of linkage disequilibrium (LD) within the
population under consideration is a prerequisite for associa-
tion mapping. A panel of a large number of SSR markers is
suitable to establish LD patterns, as was shown in maize
(Remington et al. 2001; Liu et al. 2003; Stich et al. 2005)
and durum wheat (Maccaferri et al. 2005). Gametic phase
disequilibrium can be the result of a number of factors next
to recombination, and the population structure resulting
from selection, population admixture, and genetic drift is
more likely to remain intact over time in a selfing species
such as soybean, in which recombination is very low or
absent. Zhu et al. (2003) detected low genome-wide LD in
25 diverse soybean genotypes basing on sequencing of a
few regions (including 66 complete GenBank genes, 50

cDNAs, 13 BAC subclones and 15 SSR flanking regions).
Recently, Hyten et al. (2006) analyzed the structure of LD
in three regions of the genome varying in length from 336
to 574 kb and found that LD extended from 90 to 574 kb in
the three cultivated G. max groups, which included Asian
landraces, North American Ancestor and Elite cultivars.

The objectives of this study were the following: (1) to
clarify the population structure of Chinese soybean land-
races; (2) to analyze the genetic diversity and genetic rela-
tionships among soybean landrace populations; and (3) to
assess the extent and genomic structure of LD between
pairs of SSR markers on a genome-wide scale in the popu-
lations. The results of this study will help to utilize, con-
serve, and manage Chinese soybean landraces effectively,
and provide molecular information to broaden genetic
diversity of soybean in the world.

Materials and methods
Plant materials
Sampling

In the Chinese national soybean gene bank, 23,587 soybean
landraces have been collected, conserved and documented
mainly with phenotypic traits that are stable during 2—
3 years of observations. Based on the agronomic character-
istics in the catalog (Wang 1982; Chang and Sun 1991;
Chang et al. 1996), Qiu et al. (2003) compared 20 sampling
strategies and proposed an optimal sampling strategy and
sample size for developing a Chinese soybean core collec-
tion. All collections were first divided according to their
origin into three production areas and within each of these
production areas, soybean landraces were divided into eco-
types according to planting-time type (Table 1). From each
ecotype, 9% of the collections were sampled to form the
primary core selection. In this way, a primary Chinese soy-
bean core collection was constructed including 2,794 culti-
vars from eight ecotypes in three large growing regions.
These cultivars were planted and observed for 2 years again
for verifying the consistency of phenotype within the culti-
vars. The primary core collection of summer-planting soy-
beans from HR represented 100% of the phenotypic and
86% of the SSR allelic variation in the ecotype (Cui et al.
2003). Because genetic recombination and artificial selec-
tion would interfere with analyses of germplasm origins,
commercial varieties were excluded from this dataset. The
landraces with SSR data missing for more than five loci
were also removed from the study. This resulted in a sam-
ple of 1,863 gene bank accessions of landraces that were
used in this study. The landraces were collected from 24
provinces, cities or municipalities in China, and are estimated
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to represent over 86% of the genetic diversity of 23,587
cultivars in the Chinese national soybean gene bank (Cui
et al. 2003; Qiu et al. 2003).

SSR genotyping

Preliminary assessments of SSR polymorphic loci were
conducted using 80 cultivars from South Autumn planting
ecotype (SAu) collections with markers selected from pre-
viously reported soybean linkage groups (Cregan et al.
1999). Out of 200 SSR loci a total of 60 polymorphic and
representative markers were identified (Xie et al. 2003) as
the core SSR loci. These 60 markers were further confirmed
to be highly polymorphic and reproducible in a different set
of 190 diverse soybean cultivars (Wang et al. 2003). Here,
we amplified 60 SSR loci (52 loci from the core SSR loci
and eight additional loci from other tests) on the core col-
lection of 1,863 soybean landraces. These SSR loci were
located on 20 integrated genetic linkage groups, covering
1570.39 cM of soybean genome with 26.62 cM average
genetic distance between adjoining loci. One SSR marker
(Satt157) was removed from the dataset since it was miss-
ing in more than 186 landraces (10% of the total landraces).
Table S1 (Online Supplementary material) lists the SSR
loci, linkage groups and positions, and repeat motifs.

For each landrace five seeds with the same phenotype for
various traits including color of seed coat and hilum and
shape of seed were selected for DNA extraction. DNA was
extracted from a bulk of these five seeds. DNA extraction,
PCR amplification, and SSR genotyping followed the meth-
ods prescribed by Xie et al. (2003) and Wang et al. (2006).
The total number of polymorphic alleles at each SSR locus
was derived from calculations from all 1,863 landraces. Poly-
morphic SSR alleles present in only one of the 1,863 land-
races were defined as unique alleles, while polymorphic
alleles present in fewer than 19 (1%) of 1,863 landraces were
recorded as rare alleles (details for each marker in Table S1).

Genetic structure and phylogenetic analysis

Bayesian clustering was applied on the multi-locus SSR
data by using the software package STRUCTURE (Prit-
chard et al. 2000) in its revised version 2.1 (Falush et al.
2003). Admixture model and independent allele frequency
model were used to analyze the dataset without prior popu-
lation information. Five runs of STRUCTURE were done
for each number of populations (K) (set from 1 to 10).
Burn-in time and replication number were both set up to
80,000 in each run. The maximum likelihood ratio was
used to assign landraces to clusters, and the cut-off proba-
bility for assignment to a cluster was 0.60. The inferred
groups are referred to as ‘clusters’ to distinguish them from
the predefined ecotypes as listed in Table 1. They consist of
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groups of landraces each sampled at a different agricultural
field across China. While using STRUCTURE we have
assumed that the inferred populations are in Hardy Wein-
berg equilibrium (HWE). Soybean is a selfing crop, but as
levels of heterozygosity were low for all landraces we do
not expect a bias in the results. A second assumption of
STRUCTURE is that the loci are unlinked, but Pritchard
and Wen (2004) indicated that linked data can be used,
especially when from several linkage groups. Our markers
cover all linkage groups in soybean (Table S1).

Neighbor-joining (with 1,000 bootstraps) was carried
out in TREECON 1.3b (Van de Peer and Wachter 1994,
available at http://bioinformatics.psb.ugent.be/software/
details/). The tree was rooted using one wild species (G.
soja) accession as outgroup.

Genetic diversity of populations

Allelic richness and gene diversity were estimated using
Fstat; allelic richness was corrected for sample size (help
file FSTAT293 (Goudet 2002), available at http:/
www.unil.ch/popgen/softwares/fstat.htm). Observed num-
ber of alleles in each population (Nt) and the number and
proportion of population-specific alleles were calculated
with POPGENE 1.31 (Yeh and Boyle 1997, available at
http://www.ualberta.ca/~fyeh/index.htm).

Linkage disequilibrium

Linkage disequilibrium was evaluated for each pair of SSR
loci using TASSEL (http://www.maizegenetics.net/bioin-
formatics/tasselindex.htm), both on all landraces and on the
clusters as inferred by STRUCTURE. D' and r* LD mea-
sures modified for loci were used (Hedrick 1987; Weir
1996). Significance (P values) of D’ for each SSR pair was
determined by 100,000 permutations. For each SSR locus,
the rare alleles (i.e., those present in less than 1% of the
landraces) were combined into one allelic class described
by Maccaferri etal. (2005). A linear regression (PROC
NLIN in SAS software) was performed to investigate the
decay of linkage disequilibrium with genetic distance. To
compare LD at the level of (1) the whole population and (2)
individual clusters while accounting for differences in pop-
ulation sizes, we drew random samples from the entire set
of a size equal to the actual number of genotypes in the
cluster (Liu et al. 2003). This procedure was repeated 30
times and the results were averaged.

To identify to what extent LD was shared among pairs of
clusters in the form of common haplotypes we calculated
multilocus SSR haplotype sharing as in Koopman et al.
(2007), except that haplotypes need not be inferred but
were determined directly from the genotypic data, as nearly
all loci were homozygous.
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Table 1 Eco-geographic distribution and description of the origin of soybean landraces in China
Ecotype Production area Sub-region Origin Province Longitude Latitude No. of
code (Province) code region (°E) region (°N) accessions
NR Northern Region 82.5-132.6 28.2-51.4 796
(single cropping)
NESp North-East Spring 113.1-132.6 38.45-51.4 329
planting sub-region
Helongjiang HLJ 122.0-132.6 44.3-51.4 78
Jilin JL 120.4-130.2 41.1-45.4 117
Liaoning LN 118.4-125.2 38.5-43.6 125
Neimenggu NMG 113.1-120.0  40.5-43.5 9
NSp North Spring planting 82.5-119.6 28.2-44.3 467
sub-region
Neimenggu NMG 107.3-1184  40.3-43.4 31
Peking City Peking 115.6-116.5 39.4-40.3 15
Hebei HeB 114.1-119.6 37.4-41.6 70
Shanxi SX1 110.3-114.2 34.4-40.3 254
Shaanxi SX2 106.5-111.1 34.1-39.0 32
Gansu GS 99.5-116.3 28.2-39.6 43
Ningxia NX 105.1-107.2 37.3-38.5 20
Xinjiang XJ 82.5-86.3 42.0'-44.3 2
HR Huang-Huai Region 105.4-122.2 31.3-40.6 276
(double-cropping)
HSp Huang-Huai Spring 114.5-119.5 33.3-34.5 45
planting sub-region
Jiangsu IS 114.5-119.5 33.3-34.5 45
HSu Huang-Huai Summer 105.4-122.2 31.3-40.6 231
planting sub-region
Hebei HeB 114.2-117.3 36.3-40.6 39
Henan HeN 110.0-116.2 32.0-35.6 49
Shandong SD 115.2-122.2 34.5-37.5 45
Anhui AH 115.4-118.2 31.3-33.6 35
Gansu GS 105.4-106.2 33.5-33.5 7
Jiangsu JS 116.3-120.1 33.2-34.5 27
Shaanxi SX2 106.2-110.5 32.2-35.2 29
SR Southern Region 34.5-121.5 19.4-34.5 791
(multiple cropping)
CSp Changjiang 102.1-120.5 25.3-32.6 123
(Yangtse River) Spring
planting sub-region
Anhui AH 116.2-118.3 29.5-31.3 7
Hubei HuB 109.3-114.6 29.3-30.4 11
Hunan HuN 110.3-113.3 25.3-28.5 5
Jiangsu IS 118.5-120.5 31.3-32.6
Jiangxi X 114.1-118.2 26.2-28.4
Sichuan SC 102.1-117.3 26.4-32.4 80
Zhejiang 7] 118.5-120.4 28.5-30.1 6
SSp South Spring 104.2-121.3 21.4-28.3 143
planting sub-region
Fujian FJ 117.3-118.5 23.4-25.2 7
Guangdong GD 110.2-116.2 21.4-25.1 25
Guangxi GX 105.5-109.4 21.4-25.1 6
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Table 1 continued

Ecotype Production area Sub-region Origin Province Longitude Latitude No. of
code (Province) code region (°E) region (°N) accessions
Guizhou GZ 104.2-108.3  25.1-28.3 104
Taiwan ™ 121.3 25.0 1
SAu South Autumn 85.6-120.4 23.4-30.3 38
planting sub-region
Fujian FJ 116.2-118.6  23.4-26.5 5
Guangxi GX 110.5 245 1
Hunan HuN 111.2-112.6  25.1-28.1 7
Jiangxi X 114.6-117.6  26.2-28.6 6
Zhejiang Z) 118.4-1204  28.1-30.3 17
Tibet Tibet 85.6-97.3 28.1-28.4 2
SSu South Summer 99.2-121.5 19.4-34.5 487
planting sub-region
Anhui AH 116.1-118.6  29.5-33.2 26
Fujian FJ 116.2-119.5  25.5-27.6 16
Guangdong GD 110.2-113.2  21.4-25.1 6
Guangxi GX 106.1-111.2  21.4-25.6 30
Guizhou GZ 105.4-109.1  25.4-28.4 42
Hainan HN 110.0-110.2 19.4-19.4 1
Hubei HB 108.5-1154  29.2-33.0 115
Hunan HN 109.2-1134  25.1-294 40
Jiangsu IS 118.4-121.4  31.1-32.6 44
Jiangxi JX 114.2-117.6  25.4-29.2 11
Shanghai City SH 121.1-121.3  30.6-31.4 10
Sichuan SC 101.3-109.3  26.4-32.4 78
Yunnan YN 99.2-104.5 22.4-28.1 32
Zhejiang 7] 111.1-121.5  27.3-34.5 36

The ecotypes were defined according to differences in planting-time type and various phenotypic traits [see Qiu et al. (2003) for details]

Results
Eco-geographic distribution of primary core collections

The 23,587 soybean landraces were collected from 29 of
the 31 provinces or autonomous regions in China. There
were no soybean collections from Qinghai and Tianjin.
Qinghai province is located in the northwestern China. It
has highly elevated and widely spread forage lands, on
which very little soybean production has been spotted.
Tianjin is a small area located to the east of Peking and
encircled by the province of Hebei. Based on differences in
how soybean is cultivated we have classified the sampled
germplasm into three large eco-regions (NR, HR, and SR)
with a few overlapping areas between bordering provinces
(Fig. 1). The Northern eco-region (NR) includes the land-
races from 11 provinces located above 40°N or located in
the high-elevated northwestern part of China where only
one full season crop of spring-type soybean is grown.
Based on the climatic conditions and geographic separa-
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tions, this ecotype is further divided into two ecotypes:
Northeast Spring-type (NESp) and North Spring-type
(NSp). In NR eco-region, we sampled a total of 796 land-
races in the primary core collection (329 from NESp and
467 from NSp). Most (254) of these collections were from
Shanxi province, which is located along the central valley
of the Yellow River where the largest variation in culti-
vated and wild soybeans was identified (Xu and Lu 1983;
Chang 1989). Only two samples were selected from Xinji-
ang, where historical soybean production has been limited
by a large area of arid desert and dry conditions. However,
soybean acreage has dramatically increased in that region
as irrigation systems are improved, therefore, increased
breeding activities and utilization of adapted soybean land-
races is anticipated.

The Huang-Huai eco-region (HR) includes seven prov-
inces in central and east China (~30 to 40°N), representing
one of the most productive agricultural areas. A total of 276
landraces were selected from these eco-regions in the
primary core collection [45 spring-types (HSp) and 231
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summer-types (HSu)]. As rapid industrialization develops,
conservation of soybean landraces becomes increasingly
important and urgent in the eastern part of this eco-region.

The Southern eco-region (SR) includes 16 provinces
from east, southeast, and southwest China. This eco-region
has the largest eco-geographic diversity, from rainy coastal
Shanghai (31°N) to subtropical Hainan Island (19°N). A
total of 791 landraces were sampled in the primary core
collection [266 spring-types, 487 summer-types (SSu), and
38 autumn-types (SAu)]. The spring-type was further
divided into Changjiang (Yangtse River) (CSp, 123) and
South (SSp, 143) types. Two landraces (SAu) from Tibet
(28°N, 4,000 m above sea level) were also included in the
primary core collection.

Allelic variation at SSR loci

The 59 SSR markers generated a total of 1,160 alleles
among the 1,863 soybean landraces. Table S1 present the
basic data on these loci including Ne (effective number of
alleles), Ho (observed heterozygosity), He (expected hetero-
zygosity) and F,. The average number of alleles per locus
was 19.7, ranging from 2 (Sct_188) to 41 (Satt281). The
smallest and the largest alleles at each given SSR locus are
listed in Table S1. Satt130 produced the largest range of
alleles with fragment sizes from 229 to 396 bp. A total of 97
(8.4% of the 1,160) alleles unique for one landrace were
detected in 46 of the SSR loci. An additional 485 (42% of
the 1,160) rare alleles (present in less than 1% of the land-
races) were observed (in all SSR loci except Sct_188). Ne
ranged from 1.85 (Satt387) to 16.12 (Satt462). On average it
was 6.66. Consistent with the self-pollinating nature of soy-

Fig. 2 Inferred population
structure of soybean landraces in
China. Each landrace is repre-
sented by a single vertical line, K=2 -
which is partitioned into K (2-8)

colored segments. Each color
represents one cluster, and the

NESp

K=3 .

length of the colored segment
shows the landrace’s estimated
proportion of membership in K=4

that cluster as calculated by
STRUCTURE in a typical run at
that value of K. The original eco- K=5 N il '
types (Table 1) are indicated af
above the figure and inferred

seven clusters (K = 7) are indi- K=6
cated below the figure

K=7
K=8

NESpM

m— NSPM

bean, heterozygotes were rare. The average frequency of
heterozygote samples (bulks of five individual plants) was
1.43% across marker loci. For all loci, F values and Ne
values were estimated in both groups of samples (Table S1).

Interestingly, landraces from the same group tended to
have alleles with similar fragment sizes for the same SSR
loci, providing additional evidence for the differentiation
among clusters. This was confirmed by the finding that R
values were very similar to F; values (not shown).

Clusters of soybean landraces in China

STRUCTURE was run for K = 1-10 based on the distribu-
tion of 1160 different alleles at 59 SSR loci among 1,863
soybean landraces (Fig. 2). The value of log Pr(X/K) (i.e.,
the log likelihood of the model given that K clusters are
present in the data) was the highest at K =7. When land-
races were subdivided into seven clusters, 81.7% of land-
races were strongly assigned to one population or another
and the proportions assigned to each group are asymmetric,
which strongly indicated that there existed real population
structure. Anyway, from K =7 to K =8, the frequency of
landraces which could not be clearly assigned to any one of
these clusters was increased largely (from 19.3 to 57.5%)
when the maximum likelihood ratio was set 0.60 or more
(Fig. 2). Based on Pritchard and Wen’s (2004) suggestion
we chose seven clusters. This number is in good accor-
dance with planting ecotypes and sowing seasons of culti-
vated soybean in China, and indeed landraces from these
ecotypes ended up in different clusters. For clarity we
denote the seven clusters with the name of the major con-
stituent followed by ‘M’ (modeled).

SAu

HSp
NSp HSu |CSp | SSp SSu

—— HSuM === SSpM === SSpSM SSuM SSusMm
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Cluster 1, denoted NESpM (short for Northeast, spring,
modeled), consisted of 202 landraces of which 199 (98.5%)
were from the ecotype NESp, notably from the most North-
ern ecotype (39.42-51.43°N) in China including Heilongji-
ang, Jilin, Liaoning provinces and a part of the eastern
ecotype in Neimongol municipality where soybeans are
sown in spring and harvested in autumn.

Cluster 2 was named NSpM since all of its 304 landraces
were from the ecotype NSp, collected from the mid-down
stream in Yellow River valley in China including Gansu,
Hebei, Neimongol, Ningxia, Shanxi, as well as Shaanxi and
Peking City (99.46-119.56 E, 34.00-43.36°N). They are
cultivated as a spring sowing type.

Cluster 3, denoted HSuM, contained 275 landraces, of
which almost half (43.6%) were landraces from the HSu
ecotype, namely from Gansu, Hebei, Henan, Jiangsu, Shan-
dong, and Shanxi provinces. They are cultivated as double
cropping planting type (soybean planted in summer). This
cluster contained more than half of all HSu ecotype land-
races. Another important part of this cluster (42.9%) was
formed by one quarter of all landraces from the NSp eco-
type. Geographically the planting regions of HSu and NSp
ecotypes do overlap, but this was previously overlooked. In
fact, summer soybean/winter wheat double cropping sys-
tem is the main cultivation system in the middle plain area
and southern region in Shanxi Province. Indeed, among the
85 landraces from Shanxi province that were assigned into
HSuM, 72 landraces came from these regions. Therefore
we can consider that planting characteristics were previ-
ously misclassified and that the most proper name of these
summer ecotypes is indeed HSuM.

Cluster 4 contained 82 landraces drawn from all pre-
defined Spring-sowing ecotypes—48.8% from CSp, 20.7%
from SSp, 15.9% from HSp, 12.2% from NESp and 2.4%
from NSp. They were from Jiangsu, Fujian, Guangdong,
and Sichuan provinces. Since these spring-planting land-
races were mainly (69.5%) collected from south China, we
named it as SSpM.

Cluster 5 consisted of 116 landraces (57 from CSp and
57 from SSp, 2 from SSu). As was the case for cluster
SSpM, most (98.3%) of the landraces came from spring-
planting ecotypes in south China. Since 77.6% of the land-
races were collected in the Southwest region of China
(Sichuan and Guizhou provinces), we named this second
spring-planting cluster SSpSM.

Cluster 6 was comprised of 365 landraces that were cul-
tivated in Anhui, Fujian, Guangdong, Guangxi, Henan,
Hebei, Jiangsu, Jiangxi, Shanghai, and Zhejiang provinces.
Among them, 292 landraces (80% of the total) were col-
lected from summer-planting ecotypes in south China out-
side Guizhou, Yunnan and Sichuan provinces. Therefore
we named this cluster SSuM. In addition, it includes 31
(81.6%) of the landraces from ecotype SAu.

Cluster 7 consisted of 160 summer sowing type land-
races, of which 135 from SSu (mainly from Guizhou, Yun-
nan and Sichuan provinces). We named this cluster
SSuSM.

In addition to the landraces that were clearly assigned
(probability > 0.60) to a single population, 359 landraces
(19.3% of the total) were not clearly assigned to any one of
these clusters. Only 8.8% of the landraces of NSp remained
unassigned, but as many as 42.2% of the landraces of HSu.

Genetic relationships among clusters

Overall F among clusters is 0.130 (95% confidence inter-
val 0.113-0.150) with F; for each locus ranging from 0.034
to 0.322. Pairwise comparison on the basis the values of F;
can be interpreted as standardized population distances
between two populations (Li and Nelson 2001; Chen and
Nelson 2005). The pairwise F values among seven clus-
ters ranged from 0.048 between the southern clusters
SSuSM and SSuM to 0.194 between NSpM from northern
China and SSpSM from southern China (average pairwise
F,=0.122). All values were significantly different from
zero (P < 0.001) (Table 2).

Table 2 Pairwise estimates of F based on 59 SSR loci among the seven model-based clusters of Chinese soybean landraces

Subdivision NESpM NSpM HSuM SSpM SSpSM SSuM SSuSM
NESpM 10 23 12 14 13 9
NSpM 0.188 0.114 18 9 13 12 12
HSuM 0.109 0.164 0.092 19 19 17 19
SSpM 0.140 0.194 0.122 0.100 27 30 30
SSpSM 0.169 0.165 0.089 0.058 0.081 28 31
SSuM 0.152 0.170 0.101 0.071 0.074 0.048 35
SSuSM 0.158

Below the diagonal are pairwise F values between clusters. All pairwise F values are significant at 0.001 level (obtained after 21,000 permuta-
tions and adjusted for multiple comparisons). Above the diagonal are the number of loci which have the same highest frequency allele (in italic

and underlined the comparisons of clusters from Southern China)
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Alleles were consistently more common in one cluster
than another. The highest-frequency alleles among 59 loci
in each cluster were listed in Table S1. We calculated, for
each pair of clusters, the number of loci for which the same
allele had the highest frequency (Table S1). In accordance
with the result of F analysis, more loci had the same most
frequent allele among the four Southern clusters, up to 35
loci between SSuM and SSuSM.

A Neighbor-joining tree with bootstrap support values
(>50%, based on 1,000 bootstraps) for the 1,863 soybean
landraces in China (Fig. 3) showed good agreement with
the STRUCTURE analysis. Except those landraces (with
blue color) at the bottom of the graph which were assigned
into HSuM rather than clusters in South China most land-
races from one cluster were grouped together. Some land-
races from clusters in south China grouped together in the
tree, consistent with smaller genetic differences among
some of the clusters from southern China. All of the F; val-
ues were statistically significant (Table 2), but this may, at
least partly, be the result of the large number of loci and
landraces involved. Indeed, when the F; analysis between
the overlapping south China clusterss SSuM and SSuSM
was rerun using subsamples of 30 landraces and 20 loci,
they were not significant, while those from other compari-
sons generally were (not shown).

Genetic diversity of clusters of populations

All 59 SSR loci were polymorphic in each cluster, with
always a large excess of homozygotes. Of a total of 1,160
alleles 552 were found in all seven clusters and 291 were
unique for one cluster.

Gene diversity among the seven clusters were not sig-
nificantly different (P >0.05), but allelic richness was
(P <0.001), as well as the number of alleles that were pop-
ulation-specific (Table 3). Among the seven clusters,
SSuM, whose landraces have two planting types (summer
and autumn), had the highest allelic richness (on average
10.5 alleles per locus) and the largest number of cluster-
specific alleles (71 in total, or 8.5% of the alleles present)
followed by HSuM. HSuM had the highest gene diversity
and the second highest allelic richness and number of clus-
ter-specific alleles. The difference in gene diversity and
allelic richness between SSuM and HSuM was not signifi-
cant. NESpM, NSpM and SSpSM had lower allelic rich-
ness regardless of the sample size analyzed.

Linkage disequilibrium: effect of population stratification

The extent of LD was assessed among all 1,711 pairs of
SSRs loci for all landraces as well as for the seven clusters
separately (Table 4). Across all landraces, as many as
95.2% of total pairs of marker pairs were in LD (based on

NESpM

HSuM

NSpM

SsuMm

| sspm

SSusm

SSpsSM

I
] |6

HSuMm
Fig. 3 Neighbour-joining tree with bootstrap support values (>50%,
based on 1,000 bootstraps) for the 1863 soybean landraces in China.
The tree was rooted using one wild species (G. soja) accession as out-
group.The colored bars indicated the position of the landraces which
were assigned to seven inferred clusters

Table 3 Summary statistics of the seven model-based clusters in China

Cluster  No. of Nt Allelic No. of Gene
landraces richness®  cluster-specific  diversity
alleles
NEspM 202 516 75 25 0.711
NspM 304 491 74 31 0.691
HsuM 275 762 103 47 0.753
SspM 82 539 9.1 23 0.748
SspSM 116 465 7.5 17 0.685
SsuM 365 837 105 71 0.730
SSuSM 160 598 89 18 0.725

Nt Observed number of alleles for 59 SSR loci in each cluster
# Calculated using rarefaction on a sample of 46 landraces per cluster

D', P<0.05) after Bonferroni-correction. The value of
96.7% for pairs of markers from the same chromosome
(within the same linkage group) was only slightly higher
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The extent of LD

No. of pairs of loci in LD

Table 4 Percentage of SSR locus pairs in significant (P < 0.05) linkage disequilibrium (LD) and LD statistics D' and r* of soybean landrace populations in China

Samples

@ Springer

Total

Markers from different

linkage groups

Markers on the

Expected fraction
of locus pairs +

Standard Error

Total

Markers from different

linkage groups

Markers on the

same linkage group

same linkage group

D’

No. of locus  Fraction of  No. of locus  Fraction of
pairs in LD* pairs in LD

Fraction of

No. of locus
pairs in LD*

locus pairs

locus pairs

locus pairs

0.308 0.008

0.294 0.015
0.271

0.008

0.308
0.293

0.008

0.309
0.316

0.952

1,499

0.951

1,441 (1515)
687 (1591)
233 (1567)
336 (1520)
283 (1536)
281 (1549)
222 (1459)
233 (1477)

0.967

58 (60)
31 (62)
10 (57)
16 (59)
9 (59)

All

0.014

0.020

0.579 + 0.0327

0.434

718
243

0.432

0.500
0.175
0.271

NESpM
NSpM
HSuM
SSpM

0.010

0.010

0.009 0.271

0.020

0.257

0.581 £ 0.0362
0.433 +0.0393

0.150
0.223

0.149
0.221

0.018

0.018 0.413

0.413

0.413

352

292
293

0.522  0.030

0.030
0.471

0.030 0.522

0.325 £ 0.0402 0.523

0.183
0.182
0.154
0.154

0.184
0.181

0.153
0.200
0.193
0.148

0.036

0.036

0.042 0.470

0.013

0.480

0.217 £ 0.0475

12 (60)
11 (57)
8 (54)

SSpSM
SSuM

0.379 0.013

0.013

0.379

0.386

0.202 £ 0.0449

233
241

0.152
0.158

0.466 0.027

0.027

0.026 0.466

0.455

0.206 % 0.0359

SSuSM

# Based on average percentage of all locus pairs showing significant D’ in random samples containing the same number of landraces. Between brackets the actual number of locus pairs used in

analysis

than that of 95.1% for markers from different chromo-
somes.

The frequency of pairs of loci with significant (P < 0.05)
LD (based on D") was reduced by more than half when LD
was calculated within each cluster. The lowest percentage
of locus pairs in LD (15.0%) was found in the NSpM clus-
ter despite it being the largest population. Cluster NESpM
had the highest percentage (43.4%). To evaluate this fur-
ther, we used the method of Liu et al. (2003) to correct for
the fact that larger population size leads to an increased
power for detecting locus pairs in LD. The expected per-
centage of SSR locus pairs in LD in the total population
was calculated for the population size of each cluster and
compared to the percentage observed within that cluster.
This showed that population size could not explain all, as
the observed percentage of locus pairs in LD within each
cluster was lower than the expected percentage. This
suggests that genetic structure influences LD in soybean
landraces.

Linkage disequilibrium: effect of genetic distance between
loci

Within clusters, the LD found could be due partly due to
the existence of (physical) linkage between loci located
several centiMorgans away on the same chromosome.
Therefore, we undertook two different analyses on the sub-
set of pairs of loci that were located on the same linkage
groups.

First, if physically long haplotypes would be maintained
in the cluster, then one would expect that the statistical fre-
quency of pairs of loci in high LD would depend on the dis-
tance between the two markers. Indeed, a scatter plot of the
LD statistics as a function of the inter-marker distance
(Fig. 4a) showed that D' decreased with increasing distance
in some clusters, notably in the southern China clusters
SSpM and SSuSM, but not so in others. No statistically sig-
nificant correlation was found between inter-marker dis-
tance and D’ or 2 in seven model-based clusters. However,
consistent with results above both * and D’ were slightly
higher in individual clusters than in the complete set of
landraces (average D' across clusters was 0.402 compared
to 0.308 overall).

The second analysis was done to determine whether spe-
cific multilocus microsatellite haplotypes (cf. Koopman
etal. 2007) could be detected in multiple landraces from
one cluster, compared to finding the same long haplotype
shared between landraces from different clusters. Cluster
NESpM contained the highest number of shared pairs of
loci of all clusters, and also the highest level of shared pairs
with other clusters. In contrast, no single pair of loci in LD
was shared between SSpM and SSpSM and between
SSpSM and SSuSM. Moreover, the number of shared locus
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pairs in LD among all southern clusters was lower than
those of other pairwise clusters.

Discussion

The abundant allelic variation per locus in this study (19.7)
exceeded the previous reported 5.0-15.8 alleles per locus
(Maughan et al. 1995; Diwan and Cregan 1997; Narvel
etal. 2000; Abe et al. 2003). This may be caused by our
much extended sampling. However, it does indicate a high
level of genetic diversity among the Chinese landraces.
The unique or rare alleles in this study were always
detected at those loci with more polymorphic alleles, which
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is in agreement with the findings reported in rice (Jain et al.
2004). As these unique or rare alleles are likely caused by
natural mutation and selection (Mousadik and Petit 1996),
they can be used not only in the specific categorization of
germplasm collections, but also in their subsequent utiliza-
tions in breeding and plant development as unique markers.
Rareness at SSR loci, especially in plants with rare alleles
at multiple loci, may indicate that these landraces have had
limited genetic exchange with other landraces, and there-
fore may have rare alleles for various (functional) traits as
well. As genetic improvement of a trait often involves find-
ing useful variants which may be present at a low frequency
(Chamberlain and Bernard 1968; Van Duyn etal. 1971;
Anand and Gallo 1984; Anand et al. 1988; Coordinative
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Group of Evaluation of SCN 1993), this could be a means
of identifying plants with possible useful alleles. Hyten
et al. (2006) found that 79% of the low-frequency sequence
variants in the Asian Landrace collection were not present
in the elite cultivars, which suggests that the variation use-
ful for genetic improvement is not yet present in the elite
cultivars. These studies suggested that identification of the
larger number of unique and rare alleles is important, and
thus confirmed the necessity and perspectives of our
research with a large number of landraces. Conservation of
unique germplasm collections is part of the process of
maintaining the largest amount of genetic diversity in the
gene pool.

Genetic structure

Previously, soybean landraces have been classified into
ecotypes on the basis of region only. Genetic differences
between regions were determined to some extent, but it was
not known whether this classification was optimal. In addi-
tion, the classification was identical for each landrace from
a certain region, ignoring differences among landraces, pos-
sible substructure, and admixture through trade of seeds.
We have obtained genetic information for 59 single
sequences repeats (SSR) loci and based solely on this
genetic information we have used Bayesian clustering to
group 1,863 Chinese cultivated soybean landraces into
seven clusters. The seven model-based clusters, NESpM,
NSpM, HSuM, SSpM and SSuM, which contained 1,504
landraces with a probability >0.60 to one of the clusters, do
correspond to geographically defined ecotypes, with mostly
(but not exactly) the same composition of landraces. It was
noted that HSu landraces collected between 32.0 and
41.6°N along the mid-stream of the Yellow River valley
were assigned to one cluster, termed HSuM, while the
majority of the HSu landraces from 31.3 to 34.5°N (adja-
cent to South China) were assigned to SSuM. This indicates
that the former HSu ecotype consists of two genetically dis-
tinct groups of landraces, which have a distinct geographi-
cal distribution.

The other two southern clusters do not have such a clear
geographically distinct distribution. SSpSM and SSuSM
were defined as new independent clusters which were dis-
tinct in composition of landraces from SSpM and SSuM,
respectively. The landraces of SSpSM mainly came from
Sichuan and Guizhou province, while the landraces of
SSuSM were mainly from Sichuan, Guizhou and Yunnan
province. Similarly, Gai and Wang (2001) already defined
landraces from YunGui plateau region, the mountainous
areas around the Sichuan and the plateau of western Sich-
uan as a distinct cluster according to phenotypes (mainly
based on growing period) and the type of natural and culti-
vating condition. Yunnan, Sichuan and Guizhou provinces,
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which are adjacent to each other, have a special climatic
environment by a surrounding mountain chain. Combined
with large differences in elevation, selection may have led
to the formation of these special cultivated soybean popula-
tions. Such environmentally distinct populations can be
very useful for broadening the genetic base of soybean cul-
tivars.

Among ecotype populations in soybean in China, SAu
had attracted attention for its low number of landraces, its
limited distribution region, and the occurrence of very
widely divergent phenotypes. As much as 81.6% of the
SAu landraces were assigned to SSuM, supporting the
opinion that SAu landraces are a small group that derived
from SSuM. This may at least partly be due to the fact that
in SAu region some summer-planting varieties (which is
common for SSuM landraces) were used as autumn-plant-
ing varieties (sowed in the last ten days of July to the first
10 days of August in South China).

In our analyses, landraces from each geographically pre-
defined ecotype were assigned to at least four model-based
clusters, in some cases (e.g., SSp) even to six of the seven
clusters. This major reshuffling may have at least two rea-
sons. First, our analysis identified those landraces which
were introduced to a new region based on genetic similarity
to the landraces in the original area. An example is the
7.6% NESp landraces that were assigned into HSuM. Sec-
ond, some planting characteristics were ignored during the
previous classifications, especially when it concerned
minority characteristics in that region. For example, 118
(25.3%) of the NSp landraces were assigned into HSuM,
with which they indeed share the characteristic planting in
summer, while the majority of NSp is spring-sowing type.
Third, previous classifications used morphological informa-
tion to infer genetic relationships, but there generally is no
direct relationship between morphological and genetic dis-
tance, as large morphological differences in a few conspicu-
ous traits may be based on differences in a few genes only.
This is consistently found in variety assessment studies as
well (Pearse and Crandall 2004).

In addition to the landraces that were clearly assigned to
a single population, 359 landraces (19.3%) did not have a
clear probability (>0.60) for any of the seven clusters. The
frequencies of these unassigned landraces assignment into
the mixed cluster (Fig.2) ranged from 8.8% (landraces
from ecotype NSp) to as many as 42.2% (ecotype HSu).
Both gene diversity and allelic richness of the group of
unassigned landraces, if treated as a group, were higher
than those of the seven model-based clusters, suggesting
that it indeed is not one homogeneous group. As many as
940 alleles (81% of the total) were observed, consistent
with a highly diverse origin. Rosenberg et al. (2002) pro-
posed that a mixed cluster might reflect continuous grada-
tions in allele frequencies across regions or admixture of
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neighboring groups, indicating that it is not one homoge-
neous group.

Genetic diversity

The region with the highest genetic diversity is generally
considered as the center of origin of a species (Vavilov
1951; Chang 1989; Dong et al. 2004). Among the seven
clusters, SSuM had the highest allelic richness and largest
number of unique (i.e., cluster-specific) alleles, while
HSuM had the highest gene diversity. The HSuM landraces
cultivated in the central and downstream area of the Yellow
River valley come from Hebei, Henan, Anhui, Gansu, Sha-
anxi and Shanxi provinces. Many studies have hypothe-
sized that the central and downstream part of the Yellow
River valley is the centre of origin of cultivated soybean,
which is a kind of rain-fed crop (Vavilov 1951; Hymowitz
and Newell 1981; Chang 1989; Dong et al. 2004; Zhao and
Gai 2004). Dong et al. (2004) found that the cultivated soy-
bean landraces in this region exhibited higher diversity
based on ten quality traits and five quantitative traits. Our
results on HSuM landraces are also consistent with these
earlier studies. In contrast, no one has proposed that the
landraces we clustered into SSuM were the first cultivated
soybeans originating from wild soybean. Dong et al. (2004)
found that the diversity at agronomic traits for southern and
southeastern landraces was much lower. Our cluster SSuM,
which is genetically highly diverse at our SSR loci, is a spe-
cific subset of landraces from south China, namely sum-
mer-planting soybean in the south of the Yangtse River.
Harlan (1975) considered that secondary centers of origin
might possess richer genetic diversity than primary centers.
SSuM is a candidate secondary centre of origin. The high
genetic diversity within SSuM may be the result of several
factors, including large area (from 100.35 to 121.52°E,
19.42 to 34.50°N), complex tilling systems, diverse envi-
ronments and multiple types of usage.

Linkage disequilibrium

SSR markers have been used for primary evaluation of LD
across the genome of crops, including maize (Remington
et al. 2001; Liu et al. 2003; Stich et al. 2005) and durum
wheat (Maccaferri et al. 2005). As a selfing species, soy-
bean was supposed to have a high level of LD, but Zhu
etal. (2003) detected low genome-wide LD in soybean
(Glycine max L. Merr.) using 49 fragments with three or
more single-nucleotide polymorphisms (SNPs), for exam-
ple, at very short distances. In this study, extensive LD was
found within the whole set of landraces: nearly all pairs of
loci (95.2%) were in significant LD within soybean in
China. The P value for the pairwise estimates of LD among
all 59 SSR loci were evaluated by the permutation version

of Fisher’s exact test. This test is affected by population
size. Since the collection of almost 2,000 landraces is much
larger than that of all previous studies, this could be part of
the reason why such higher LD values have been estimated
here. More importantly, however, population structure was
shown to produce a large part of the overall LD, since the
number of 598 locus pairs in LD was reduced sharply
within each of clusters compared to the complete dataset.
This shows that population structure needs to be accounted
for in association studies (Gupta et al. 2005) conducted
with this collection. The low value of LD within the clus-
ters can be seen as evidence that much of the recombination
events in the past have been maintained in soybean fixed in
homozygous self-fertilizing landraces.
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